Analysis 2

Friday, 7 May 2024

Take one white small paper and one blue small paper.

Vocabulary so far

Differential equation (DE)
Ordinary differential equation (ODE)
Partial differential equation (PDE)
First-order, second-order, etc.
Explicit solution or solution
Implicit solution
General solution
Particular solution or specific solution
Initial value or initial condition (IC)
Initial value problem (IVP)
równanie różniczkowe
rów. róż. zwyczajne
rów. róż. cząstkowe
pierwszego rzędu, itd.
rozwiązanie jawne
rozwiązanie niejawne
rozwiązanie ogólne
rozwiązanie specjalne
warunek początkowy
zagadnienie początkowe

Separable

A direct first-order ODE for $y(x)$ can be written in the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) .
$$

This is solved by justing doing an anti-derivative: $y=\int f(x) \mathrm{d} x$ gives an explicit solution for y.

An autonomous first-order ODE for $y(x)$ can be written in the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=g(y) .
$$

This is solved by first "separating variables". The equation $\int \frac{\mathrm{d} y}{g(y)}=\int \mathrm{d} x$ leads to an implicit solution for y.

Separable

A direct first-order ODE for $y(x)$ can be written in the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) .
$$

An autonomous first-order ODE for $y(x)$ can be written in the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=g(y) .
$$

A separable first-order ODE for $y(x)$ can be written in the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) \cdot g(y) .
$$

Separable

An autonomous first-order ODE for $y(x)$ can be written in the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=g(y) .
$$

A separable first-order ODE for $y(x)$ can be written in the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) \cdot g(y) .
$$

Question: Is every autonomous ODE also separable?

Solving a separable ODE

Example: $y^{\prime}=\sin (x) y^{2}$

Solving a separable IVP

Example: $y^{\prime}=10 x y^{2 / 3}, y(2)=8$

Slope fields

Finding explicit solutions for other ODEs is often difficult (sometimes even impossible), but there is a way we can start to analyze solutions to any firstorder ODE.

A slope field (also called a direction field) for a first-order ODE is a picture that shows the slope of the function at many different points.

It's easiest to understand using an example. Let's look at

$$
y^{\prime}(x)=\frac{x}{y} .
$$

Slope fields

The slope field for $y^{\prime}(x)=\frac{x}{y}$ has a small line of slope $\frac{x}{y}$ at many points (x, y).

Draw a slope field for $\frac{\mathrm{d} y}{\mathrm{~d} x}=y$.

What "trivial solutions" (constant functions) does $\frac{\mathrm{d} y}{\mathrm{~d} x}=2+y-y^{2}$ have?

Solve the ODE $x y^{\prime}=\ln (x) y^{3}$.

Types of ODEs

There are many names for categories or patterns of ODEs.

- Direct: $y^{\prime}=g(x)$
- Autonomous: $y^{\prime}=h(y)$
- Separable: $y^{\prime}=g(x) \cdot h(y)$
- First-order linear: $y^{\prime}=P(x) y+Q(x)$ NEW!

Remember that we can use other letters. $\frac{\mathrm{d} x}{\mathrm{~d} t}=f(t) x+g(t)$ is also first-order linear.
Before we move on to "linear" ODEs, there is one specific example of a separable (actually, autonomous) equation that is worth looking at.

